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THE EFFECTS OF CURVATURE AND V I S C O S I T Y  ON BAROCLINIC  
I N S T A B I L I T Y  - A  TWO-LAYER MODEL 

1 .  INTRODUCTION 

The near-zero gravity environment of Spacelab presents an opportunity 
to perform geophysical fluid flow model experiments in t rue spherical geometry. 
A dominant radial dielectric body force, which i s  analogous to gravity, can be  
achieved over a volume of fluid held between two concentric spheres  by applying 
a large voltage across  the spheres [l,21. There i s  no way such experiments 
can be performed in a laboratory on the Earth 's  surface because the dielectric 
body force i s  weak and i t s  effect is overwhelmed by terrestr ia l  gravity. 

A spherical model of the general circulation of the Earth' s atmosphere 
is being considered for  Spacelab [2 ] .  In the past, much sophisticated general 
circulation modeling has been performed in cylindrical geometries, and much 
has  been learned which i s  relevant to the general circulation [ 3,4,5]. However, 
these models have ser ious limitations when attempts are made to extend their 
resul ts  to the spherical geometry of the atmosphere. 

Systematic scaling of the governing equations for  large-scale ( synoptic-
scale) processes  in  the atmosphere and the laboratory models yields an identical 
set of approximate equations for  both systems known a s  the quasi-geostrophic 
equations [ 61 (except that curvature t e rms  a r e  missing from the cylindrical 
models) ; therefore, the laboratory experiments a r e  called models. These 
equations do not include external heating processes  which are important on 
longer t ime scales, and they do not include local dissipation processes  which 
are small. Using the quasi-geostrophic equations, a l inear stability analysis 
of a baroclinic zonal current contained between two rigid parallel boundaries 
has  been completed. Some effects of curvature and boundary dissipation were 
included. The motivation for  this analysis was to guide the design of the 
Atmospheric General  Circulation Experiment (AGCE) for Spacelab. This report  
describes the stability analysis and presents  the results. For additional infor­
mation on AGCE and on baroclinic instability and the two-layer model, the reader  
i s  referred to the references herein. 



No one has  succeeded in solving analytically the equations for baroclinic 
instability on a sphere - they are not separable. To proceed, simplifications 
must  b e  made. The analysis described in this report was  performed on a 
p-plane. The p-plane i s  a tangent plane to a sphere at some latitude 0 on which 
recti l inear Cartesian coordinates are used and on which the variation of the local 
vertical component of rotation rate with latitude is represented linearly. The 
important effect of curvakwe introduced in this way is known as the p-effect. 
The  effect of viscosity at the boundaries was introduced using the Ekman com­
patibility conditions [ 71. These conditions enable one to omit a detailed dis­
cussion of the Ekman boundary layers  on the horizontal surfaces  while keeping 
the effect of these layers  on the interior flow. No  variation of the current  in 
the north-south direction in the basic state was permitted. The continuous 
vertical structure was reduced to two layers  within which all dependent quanti­
t i e s  were kept constant. This  two-layer model has  been used by many workers  
and has  proved to b e  a useful theoretical model for  understanding baroclinic 
instability [ 6,8,9,10]. 

The analysis of the effect of Ekman damping on baroclinic waves on a 
p-plane, using a two-layer model, was f i r s t  performed by Holopainen [ 111. 
However, since Holopainen' s formulation was for  the atmosphere and his 
resul ts  were not presented in a form suitable for  discussing the spherical model, 
it was necessary to repeat the analysis from the beginning. Holopainen dis­
covered an unexpected destabilization of the waves by Viscosity, which is dis­
cussed in Section V. 

1 1 .  FORMULATION OF THE TWO-LAYER MODEL 

Let u s  consider a p-plane on which the axes (x, y, z) correspond to  
eastward, northward and vertical directions, respectively. Let the corre­
sponding velocity components be (u,  v, w) . The quasi-geostrophic set of equa­
tions on the p-plane is 

a ca t  -+ (1,. V ) l + p V n = - f V  	 v 9-d 

-v 2p =  -fV ( k x v  ) 91 
P -n 
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a wv . V  + - = o  9-n a z  

aT a T  
at + (xn * V ) T + w - = O  ,a z  

where 

= vertical component of relative vorticity 

v = nondivergent pa r t  of the horizontal flow 
-n 

v = divergent par t  of the horizontal flow
-d 

V = horizontal operator 

A z = unit vector in the z-direction-

p = pressure  

T = temperature 

p = density 

g = gravity (o r  some other body force) 

f = twice the vertical component of the rotation rate 

p =  df/dy. 

For the derivation of these equations and for further discussion, see References 
6 and 12. 

3 




Since V 	 v = 0, we can wri te  v in t e r m s  of a s t ream function 7,b as 
-n -n 

A v = z x v l )-n -

and 

A g = z . v x v  = V 2 $  . 
-n 

Substituting from equations (7)  and ( 8) into equations (1) and ( 2 ) ,  we obtain 

a
- ( v 2 7 ) ) + ( v  . v ) v 2 q + p v  = - f V  v 9 (9) 
a t  -n n -d 


1

- V 2 p = f V 2 7 )  . 

P 

Eliminating further and using equations (9)  and (10) and ( 3 )  through ( 6 ) ,  we 
obtain 

aw -a (v27))+ (En v)v27)+ p v n =  f - 9a t  a z  

aT
where x = g a  -. a z  

Equations (11) and (12) can be  solved as they are with appropriate 
boundary conditions [ 131, but the solutions are in the form of confluent hyper-
geometric functions, and computations based on such functions with complex 
arguments require much time-consuming programming. A two-layer model i s  
used. 

4 




In the two-layer model the fluid is divided into two layers  bounded by 
surfaces, as  shown in Figure 1. The surfaces at levels 0, 2, and 4 divide the 
fluid into the two layers. In each layer, the values of s t ream function and 
vertical velocity (and other dependent variables) are assumed constant through­
out the layer  and are set equal to their  values at the midpoint of the layer. The 
midpoints are denoted by levels 1and 3.  The vorticity equation (11) is applied 
at levels 1 and 3 with aw/ az evaluated as 

(E),= wA29 

where Az i s  the thickness of each layer. The resulting vorticity equations are 

a f -a t  V2$1+ (2 V)V2$1+ pvl =-Az (w2 - wo) , 

a f-V2$3 + (3 V)V2$3+ pv3 - A za t  -- (w4 - w2) . 

Equation ( 1 2 )  i s  applied at level 2 a s  

3 is not a predicted quantity of the model, but i s  obtained by linear interpolation 
between levels 1 and 3, 

5 



w4 
L = 2Az = d 4 

w2 
z = Az 2 

wO 
z = a  0 

Figure 1. Arrangement of variables in the vertical for the 
two-layer model. 

Therefore, remembering equations (7)  and (17), equations ( 1 4 ) ,  (15), and (16) 
make up three equations in the three unknowns $1, qb3, and w2. wo and w4 are 
specified by the boundary conditions. 

A. The Basic State 
We shall perturb a geostrophic baroclinic steady state specified by: 

v i =  v 3 = 0  , w o = w 2 = w 4 = 0  , ( 1 8 4  

6 




where Ui and U3 are constant horizontal velocities in levels 1and 3, respectively, 
UT is the thermal wind, and To(y, z) i s  the basic state temperature distribution. 

Equations (18) are steady solutions of equations (14), (15), and (16) . 
B. The Perturbed State 

We now define perturbation quantities as follows: 

The superfix denotes a perturbation quantity. Substituting from equation (19) 
into equations (14) ,  (15), and (16) and linearizing by neglecting products of 
perturbation quantities, we obtain 

where U = 1 / 2  (Ut  + U3).
m 
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Scaling shows that the direct  effect of viscosity on the interior flow i s  
weak, and hence viscous t e rms  are not present  in the quasi-geostrophic equa­
tions (1)through ( 6 )  The dissipative effect of viscosity enters this problem 
through the vertical velocity forced at the boundaries by convergence and diver­
gence of the flow. These vertical velocities are given by the Ekman compati­
bility conditions, namely, 

where v i s  the kinematic viscosity and 8 i s  the rotation rate (f = 28) .  

I 1 1 .  SOLUTION OF THE MODEL 

The two-layer model stability problem is now completely formulated 
by equations (20) ,  (21) ,  and (22) and boundary conditions of equations (23) 
We assume solutions of the form 

$1 = A exp i(Ax + py - Act) (2 4 4  

$13 = B e x p i ( A x + p y - A c t )  , (24b) 

wh = c exp i(1y + py - Act) . ( 2 4 4  

Substituting equations (24) into equations (20) ,  (21) ,  and (22) ,  we obtain 

8 



-- 

- -  

f
ih{ ( c  - Ut) k2 + p} A = Az -(C- w;) , 

f
i h { ( c - U 3 ) k 2 + p } B = - ( w ~  -C) ,

Af 

XAz
-ih(c - U 3 ) A + i h ( c - U 1 ) B = - f c , 

where k2 = h2 + p2 and x = ga! dTo/dz. 

We now proceed to  apply the boundary conditions of equations ( 2 3 ) .  We 
obtain 

ih{(c - U i ) k 2 + p + i 6 } A - z C = 0  , 
(28)

f 

f
i h { ( c - U 3 ) k 2 + p + i 6 } B + - C = O  , (29)Az 

XAz
-ih(c - US)A + ih(c  - Ui)B f c = o  , ( 3 0 )  

where 6 = (fk2/2Mz)( v / Q )v2 . 
The condition for a nontrivial solution of equations (28)  through ( 3 0 )  i s  

f 
i h { ( c - U l ) k 2 + p +  is} 0 

Az 

0 ih{(c - U3)k2 + p +  is} f 
= o .  (31)  

XA z---ih( c - ~ 3 )  ih( c - Vi) f 

9 




Multiplying out, we have 

ih((c - U i ) k 2 + / 3 + i 6 }  ih((c -U3)k2+/3+i6} 

Az- ( f ) [ - h 2 ( c - U 3 ) ( ( c - U 3 ) k 2 + / 3 + i 6 } ]  = O  . 

Rearranging equation (32) to give a polynomial in c, we obtain 

k 2 ( k 2 + 2 s 2 ) c 2 + ( 2 ( k 2 +s 2 ) ( p + i 6 )  - ( U i +  U3)k (k2 +2s2)} c+{k4U1U32 

+ ( p + i 6 ) 2  - ( U l + U 3 ) ( k 2 + s 2 ) ( / 3 + i 6 )+k2s2(U:+U:)) = O  , 

( 33) 

where s2 = f2/xAz2. 

Solving equation (33) for c gives 

(k2 + s2) k ( k4 - 4 ~ ~ ) )Y2C = U  
m 

- ( p + i ~ )k2(k2+ 2s2) k2(k2+2s2)
( (p+i6)2s4+UT2 4  

( 34) 

Separating equation (34) into real and imaginary par ts ,  we have 

(k2 + s2) 1 [ ( ( p 2  - t i 2 ) s 4 + U T k ( k4 - 4 ~ ~ ) ) ~2 4  
= m - k2(k2+ 2s2) k2(k2+ 2s  ) 

10 




k2 + s2) 
k2(k2 + 2s’) k2(k2 

1 
+ 2 s  ) [ {(9- 6’) s4 + UT2k4(k4 - 4s4) 

where 

t a n 5  = 
2 psS4 

( p2 - 62) s4 + UT2k4(k4 - 4s4) 
( 37) 

The condition for marginal stability i s  found by letting 9( c) = 0. Using 
equations ( 3 6 )  and ( 3 7 ) ’  we obtain 

P2s4+ (k2 + s2)262= -U T2k2(k2 - 2s’) ( k2 + 5’)’ ( 38)  

It is convenient to wri te  equations ( 3 5 ) ,  ( 3 6 ) ’  and ( 38) in nondimensional form; 
these equations are, respectively, 

11 




(42) 

where c* is the angular frequency and u* i s  the growth rate and where,
R I 

-An aster isk denotes a nondimensional quantity; B = tan $ / F 2 E ,  Ta ­
m 

~~/r'1432,
S = g a A T  /f2d; rl= h/d,  r2= R/d, E = ATh/ATd, E = v/fd2; and 
V 

h i s  a horizontal scale, d i s  the depth, i s  the mean radius, and 9 i s  colatitude, 
A Th i s  the imposed horizontal temperature difference of the basic s ta te ,  and 

AT
d 

i s  the imposed vertical temperature difference of the basic state. k* and 

A* are wave numbers nondimensionalized by d. U* and c* are nondimensionalized 
m

by fd. u*R and c*are nondimensionalized by f.I 

IV. THE RESULTS 

Before using equations (40), (41) ,  and (42) to plot the resul ts  for  ranges 
of the dimensionless parameters  ( E ,  B, S, and Ta ) and the wave numbers 

m 
(A* and p * )  ,we shall convert A* and p* to actual discrete  zonal and meridional 
wave numbers for  finite spherical geometry. Consider our p-plane a t  latitude 
8 on a sphere of mean radius E;then, 

12 




-- 2 n  2nE cos 8 m-
h m , i.e., h* = r2C O S  e t 

where m is the actual discrete  zonal wave number. If we assume that the wave 
fi l ls  the meridional scale  h, we have 

2n- = 2 h  ; i.e., P * = - n 
P h * 

We now proceed to plot the marginal stability diagrams using equation (42). 
Figures 2 through 11 show S versus Ta  for several  different values of m and 

m 
fo r  fixed values of E, r1,rz,and B. Each figure also shows the resul ts  for  
B = 0. The fixed parameters  are varied systematically as one proceeds from 
diagram to diagram. e = 45' fo r  all the figures. The Table presents a l i s t  of 
the figures and the corresponding values of the parameters.  

r I ~ r r r l r ~ r I l r l l l l [  1 1 r l r l l r ~  1 1 1 1 l l f i l  

E = 0.2, rl= 1.50, r2= 2.50 

m = l  

2 

3 


S 


10 102 lo5 106 


Figure 2. Plots of the marginal stability curves for different wave num­
be r s  ( m )  and for  E = 0.2, I'i= 1.50, and r2= 2.50 [the continuous 
curves are for  B = 3.00 and the dashed curves are for zero  curva­

ture ( B  = 0) 3 .  
13 
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E = 0.3, rl = 1.00, r2= 2.50 

Figure 3.  'Plots of the marginal stability curves  for  different values of 
m and for  E = 0.3 ,  rl= 1.00, and rz= 2.50 ( the  continuous curves 

are for  B = 1 . 3 3  and the dashed curves for B = 0). 

1 1 ,ri-,-7 1 I r , - , - . i T i  1 T - r , t t , ' [  1 T 1 r , . r T  

!E = 0.3, rl = 1.50, r2= 2.50 

0 = 45O 

S 

A 


10 

Figure 4. Plots of the marginal stability curves  for different values of m 
and for  E = 0 . 3 ,  TI = 1.50, and rZ= 2.50 ( the  continuous curves 

are for B = 2.00 and the dashed curves for  B = 0). 
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Figure 5. Plots of the marginal stability curves for different values of m 
and for E = 0.3 ,  rl = 2.00, and rz= 2.50 ( the continuous curves 

are for  B = 2.67 and the dashed curves for B = 0). 

1 - 1 1 1 1 - . 1  I I t 1 1 1 1 1 1  , I , , , , , , ,  

E = 0.4. rl = 1.50, r2= 2.50 
e = 45O 

B =  1.50 
B = O  

-

_ _ _ _ -

Tam 

Figure 6. Plots of the marginal stability curves for different values of m 
and for E = 0.4, ri = 1.50, and rz= 2.50 ( the continuous curves 

are for B = 1.50 and the dashed curves for B = 0). 
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, . . .  , / . . ,  I . < I I !,, 

E = 0.3, rl= 1.50, r2= 5.00 

B =  1.00 

1.0: 

S 

10-1: 


10-2- ~~ 

10 102 1o5 106 

Figure 7. Plots of the marginal stability curves for different values of m 
and for E = 0 . 3 ,  ri = 1.50, and rZ= 5.00 ( the continuous curves 

a r e  for  B = 1.00 and the dashed curves for B = 0). 

1 10 102 1o4 1o5 

Tam 

Figure 8. Plots of the marginal stability curves for different values of m 
and for E = 0 . 3 ,  = 3 .00 ,  and r2= 5.00 ( the  continuous curves 

a r e  for  B = 2.00 and the dashed curves for B = 0). 

16 



102, 


10 ; 

s ­


1 7  


-10.1 


Figure 9. Plots of the marginal stability curves for different values of m 
and for E = 0.3, = 5.00, a n d . r 2= 5.00 ( the continuous curves 

are for B = 3 . 3 3  and the dashed curves for B = 0). 

10 102 103 1o4 1o5 106 


Tam 

Figure 10. Plots of the marginal stability curves for different values of m 
and for E = 0 . 3 ,  l?i = 1.50, and rz= 10.0 (the continuous curves 

are for  B = 0.50 and the dashed curves for B = 0). 
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r - B =  1.67 

I 

S I 

t 

10-1i 
10-1 

Figure 11. Plots of the marginal stability curves for different values of m 
and for  E = 0.3, = 5.00, and rz= 10.0 ( the continuous curves 

a r e  for B = 1.67 and the dashed curves for B = 0) . 
TABLE. MARGINAL STABILITY CURVE PARAMETERS 

Figure No. E rl r2 B 
~ _ _  

2 0.2 1.50 2.50 3.00 

3 0.3 1.00 2.50 1.33 
4 0.3 1.50 2.50 2.00 
5 0.3 2.00 2.50 2.67 

6 0.4 1.50 2.50 1.50 

7 0.3 1.50 5.00 1.00 
8 0.3 3.00 5.00 2.00 
9 0.3 5.00 5.00 3.33 

10 0.3 1.50 10.0 0.500 
11 0.3 5.00 10.0 1.67 

18 
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Figures 12 and 1 3  show the phase speeds ( c*) and growth ra tes  (ur)R 
plotted using equations (40) and (41) ,  respectively. Figures 12 and 13  also 
show the ordinate plotted against m for  different values of S. Both plots are 
for the conditions of Figure 8 ( E = 0.3, ri = 3.00, r2= 5.00, B = 2.00) and 
for  Tam = lo3. 

The stability diagrams can be plotted and discussed in several  different 
ways. The plots chosen are those closest to the way in which the experimental 
annulus resul ts  were  presented. Each figure should be  considered as showing 
the results for varying AT

h 
and S2 only, and for fixed viscosity and geometry. 

Each plot assumes that E i s  constant. In fact, E i s  a dependent quantity, and i t s  
behavior should be  determined by a complete solution of the basic state. This 
i s  a much more  difficult problem than the one considered, but measurements 
from the annulus experiments show that E i s  primarily a function of the geometry 
and i s  only weakly dependent on AT and a. S can be considered as a measure

h 
of the thermal driving force,  Ta  


of curvature. Note that E occurs  in Ta and B. 


a s  a measure of damping, and B as a measure 
m 

m 

The resul ts  show that the flow i s  unstable within a range of S for  la rge  
values of Ta and moderate values of B. For small  values of Ta , corre­m m 
sponding to large dissipation, the marginal stability curves form a knee to the 
left of which the flow i s  stable for all S. For large values of S the flow i s  stable 
even for asymptotically la rge  Ta

in
. This i s  a short  wavelength cutoff, known 

as the Eady cutoff. 
wavelength i s  too long to fit into the finite geometry. 
below the knee there  i s  a long wavelength cutoff. 

In this model i t  i s  due to the fact that eventually the unstable 
For small  values of S 

Note that increasing B from zero has at f i r s t  almost no effect on the 
short  wavelength cutoff but has  a significant effect on the long wavelength cutoff. 
Even for  relatively small  B the effect of curvature is observed on the lower 
transition. When B 2 4, the instability i s  completely suppressed. 
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Figure 12. The phase speed ( e * )  versus m for different values of SR 
and for the conditions of Figure 8 ( E  = 0 . 3 ,  Ti = 3.00, r2= 5.00, 
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Figure 13. The growth rate (a*) versus m for different values of S
1 

and for the conditions of Figure 8 ( E = 0 . 3 ,  l?i = 3.00, r2= 5.00,  
B = 2.00) and for Ta  = lo3.  
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V. SPECIAL CASES 

We have performed a stability analysis in which curvature and dissipa­
tion are present. It i s  interesting to examine the following special cases: 
(1)both curvature and dissipation equal to zero ( B  = 0, E = 0) ; ( 2 )  curvature 
equal to zero, but dissipation not equal to zero ( B  = 0, E # 0) ; and ( 3 )  curvature 
not equal to zero,  but dissipation equal to zero ( B  # 0, E = 0). 

For  B = 0 and E = 0 (Ta = Q) ) , the marginal stability cri terion equa­
tion (42) reduces to m 

s = -8 
k*2 

This analysis was f i r s t  performed for a continuous l inear vertical shear model 
by Eady [ 141, who obtained the result 

s=- 	5. 76 
(47)k*2 

Both results give a short  wavelength cutoff only. We see  that the two-layer 
model i s  in approximate quantitative agreement with the continuous model. 

For  B = 0 and E # 0, the cri terion equation (42) reduces to 

This formula was used to plot the resul ts  in Figures 2 through 11for B = 0. 

The continuous l inear shear  model for  the purely dissipative problem was solved 

by Barcilon [ 151, and his  resul ts  are in good qualitative and approximate quanti­

tative agreement with the two-layer model results. 
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For B # 0 and E = 0, the criterion equation (42) reduces to 

If one performs the preceding analysis with E = 0 from the beginning, a slightly 
different result  is obtained, namely, 

k*4S2
B2 = k*4S2 (1 -64) . 

The stability cr i ter ia  equations (49) and (50) are plotted in Figure 14 as S 
versus B for  different values of m. Note the small area in which equation (49) 
envelops equation ( 50). This means that a small  amount of viscosity destabilizes 
the model in that area.. This result  was f i r s t  obtained and discussed by 
Holopainen [ 111. The finite amplitude aspects of this problem are discussed 
by Romea [16]. 

The continuous, inviscid, P-plane model was f i r s t  presented by Charney 
[ 131. Charney found a long wavelength cutoff, but later work [ 17,181 showed 
that this cutoff existed only in a limited sense. An up-to-date account of the 
continuous model resul ts  fo r  l inear and nonlinear shea r s  i s  given by Geisler and 
Garcia [ 191. 
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Figure 14. Plots of the inviscid, marginal stability curves as S versus 
B for different values of m and for  the conditions of Figure 8 

( rI= 3.00, r2= 5.00, B = 2.00) [the continuous 
curves are  for vanishing viscosity, equation 

(49),  and the dashed curves for  zero  
viscosity, equation (50) 1 .  
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